The aim of this document is to give students the opportunity to trace at first simple parabolas, then more complex ones and use the determinant to find the zeros of a quadratic function.
PART 1

Study the simplest of all Quadratic functions: \(f(x) = y = x^2 \)

Activity 1) Study the function \(x \mapsto f(x) = y = x^2 \)

by calculating \(y \) for the following different values of \(x \) and by completing the table below.

If \(x = -6 \) then \(y = \)
If \(x = -5 \) then \(y = \)
If \(x = -4 \) then \(y = \)
If \(x = -3 \) then \(y = \)
If \(x = -2 \) then \(y = \)
If \(x = -1 \) then \(y = \)
If \(x = 0 \) then \(y = \)
If \(x = 1 \) then \(y = \)
If \(x = 2 \) then \(y = \)
If \(x = 3 \) then \(y = \)
If \(x = 4 \) then \(y = \)
If \(x = 5 \) then \(y = \)

Activity 2) Summarise your results by completing the table below.

<table>
<thead>
<tr>
<th></th>
<th>-6</th>
<th>-5</th>
<th>-4</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td></td>
</tr>
<tr>
<td>(y)</td>
<td></td>
</tr>
</tbody>
</table>
ACTIVITY 3) Trace

\[y = f(x) \]

The graph you have just traced is called a parabola and is the shape used to design satellite dishes all around the world. What you just traced doesn't look like a satellite dish? Go to part 2 and see.
PART 2

Study this Quadratic function: \(f(x) = y = 0.1 \, x^2 \)

Activity 1) Study the function \(x \leftrightarrow f(x) = y = 0.1 \, x^2 \)

by calculating \(y \) for the following different values of \(x \) and by completing the table below.

If \(x = -7 \) then \(y = \)
If \(x = -6 \) then \(y = \)
If \(x = -5 \) then \(y = \)
If \(x = -4 \) then \(y = \)
If \(x = -3 \) then \(y = \)
If \(x = -2 \) then \(y = \)
If \(x = -1 \) then \(y = \)
If \(x = 0 \) then \(y = \)
If \(x = 1 \) then \(y = \)
If \(x = 2 \) then \(y = \)
If \(x = 3 \) then \(y = \)
If \(x = 4 \) then \(y = \)
If \(x = 5 \) then \(y = \)
If \(x = 6 \) then \(y = \)
If \(x = 7 \) then \(y = \)

Activity 2) Summarise your results by completing the table below.

<table>
<thead>
<tr>
<th>(x)</th>
<th>-7</th>
<th>-6</th>
<th>-5</th>
<th>-4</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td></td>
</tr>
</tbody>
</table>
The graph you have just traced looks much more like a satellite dish now. You should now perceive that the coefficient that multiplies the square term x^2 determines how sharp or blunt the vertex (pointy bit) of the parabola is.
PART 3

Study this Quadratic function: \(f(x) = y = x^2 + 2x - 8 \)

Activity 1) Study the function \(x \mapsto f(x) = y = x^2 + 2x - 8 \)

by calculating \(y \) for the following different values of \(x \) and by completing the table below.

If \(x = -7 \) then \(y = \)
If \(x = -6 \) then \(y = \)
If \(x = -5 \) then \(y = \)
If \(x = -4 \) then \(y = \)
If \(x = -3 \) then \(y = \)
If \(x = -2 \) then \(y = \)
If \(x = -1 \) then \(y = \)
If \(x = 0 \) then \(y = \)
If \(x = 1 \) then \(y = \)
If \(x = 2 \) then \(y = \)
If \(x = 3 \) then \(y = \)
If \(x = 4 \) then \(y = \)
If \(x = 5 \) then \(y = \)
If \(x = 6 \) then \(y = \)
If \(x = 7 \) then \(y = \)

Activity 2) Summarise your results by completing the table below.

<table>
<thead>
<tr>
<th>(x)</th>
<th>-7</th>
<th>-6</th>
<th>-5</th>
<th>-4</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td></td>
</tr>
</tbody>
</table>
The graph you have just traced cuts the X axis on two points. These points are called the zeros of the function. These are the values of x for which $f(x) = y = 0$.

There is a way to find these values without having to trace the graph. This is the object of the next activity (Activity 4).
Activity 4) USE of the DETERMINANT

Calculate the value(s) of the zero(s) of this function.

<table>
<thead>
<tr>
<th>Remember: General form of a Quadratic</th>
<th>(y = a X^2 + b X + c)</th>
<th>With (\Delta = b^2 - 4ac)</th>
</tr>
</thead>
<tbody>
<tr>
<td>If (\Delta < 0) then: No solution (No zeros)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If (\Delta = 0) then: one zero (x_0 = \frac{-b}{2a})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If (\Delta > 0) then: two zeros (x_{01} = \frac{-b - \sqrt{\Delta}}{2a}), (x_{02} = \frac{-b + \sqrt{\Delta}}{2a})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This is what it means from a graph's point of view

- **No zeros**
 - \(\Delta < 0 \)
 - \(a > 0 \)
 - \(a < 0 \)

- **1 zero**
 - \(\Delta = 0 \)
 - \(a > 0 \)
 - \(a < 0 \)

- **2 zeros**
 - \(\Delta > 0 \)
 - \(a > 0 \)
 - \(a < 0 \)

Use these formulas to first calculate the value of Delta (\(\Delta \)) to determine how many zeros

\[y = x^2 + 2x - 8 \]

has.

Then, calculate the values of these zeros.

Check your values against the graph